Math 261
 Spring 2023
 Lecture 49

Feb 19-8:47 AM

If $f(x)$ is cont. on $[a, b]$, then average value of $f(x)$ on $[a, b]$ is

$$
f_{\text {ave }}=\frac{1}{b-a} \int_{a}^{b} f(x) d x
$$

class QE 13
Find the average value of $f(x)=\sqrt[3]{x}$ on $[1,8]$. Exact answer required. $a=1, b=8$
$\left.f_{\text {ave }}=\frac{1}{8-1} \int_{1}^{8} \sqrt[3]{x} d x=\frac{1}{7} \int_{1}^{8} x^{1 / 3} d x=\frac{1}{7} \cdot \frac{x^{4 / 3}}{4 / 3}\right]_{1}^{8}$
$=\frac{3}{28}\left(8^{4 / 3}-1^{4 / 3}\right)=\frac{3}{28}(16-1)=\frac{3}{28} \cdot 154$
find the area enclosed by $f(x)=\sqrt{x}$ and

$$
\begin{aligned}
& g(x)=x . \\
& \begin{aligned}
\left.A=\int_{0}^{1}(\sqrt{x}-x) d x=\left(\frac{x^{3 / 2}}{3 / 2}-\frac{x^{2}}{2}\right)\right]_{0}^{1}=\sqrt{x} \\
=\frac{2}{3} \cdot 1^{3 / 2}-\frac{1}{2} \cdot 1^{2}=\frac{2}{3}-\frac{1}{2}=\frac{1}{6}
\end{aligned}
\end{aligned}
$$

May 15-8:49 AM
find the area enclosed by $x=y^{2}, x=0$, and $y=2$.

$$
\left.A=\int_{0}^{2} y^{2} d y=\frac{y^{3}}{3}\right]_{0}^{2}=\frac{8}{3}
$$

Now finding volume of revolution:
Consider the region shaded below

$$
\begin{aligned}
& \text { Disk method } \\
& \int_{a}^{b} \pi R^{2} d x \quad \text { Revolution } \\
& v=\int_{0}^{4} \pi(\sqrt{x})^{2} d x=\pi \int_{0}^{4} \pi R^{2} d y \\
& c
\end{aligned}
$$

we want to rotate this region by axis
Ref. Rec. 1 Axis of Revolution
Region is attached to the axis of Revolution

May 15-8:59 AM

Draw the enclosed region by $y=\sqrt{x-1}, y=0$, and $x=5$.

1) Ref. Rec. \perp A.O.R.

Rotate about x-axis.

$$
\int_{1}^{5} \pi(\sqrt{x-1})^{2} d x
$$

$$
\left.=\pi \int_{1}^{5}(x-1) d x=\pi\left(\frac{x^{2}}{2}-x\right)\right]_{1}^{5}=\pi\left[\left(\frac{25}{2}-5\right)-\left(\frac{1}{2}-1\right)\right]
$$

$$
=\pi\left[\frac{24}{2}-4\right]=8 \pi
$$

Draw the enclosed region by $x=y-y^{2}$ and

Rotate this region by Y-axis.

Disk method
Disk d
$V=\int_{c}^{d} \pi R^{2} d y=\int_{0}^{1} \pi\left(y-y^{2}\right)^{2} d y$
$\left.=\pi \int_{0}^{1}\left(y^{2}-2 y^{3}+y^{4}\right) d y=\pi\left[\frac{y^{3}}{3}-\frac{2 y^{4}}{4}+\frac{y^{5}}{5}\right]\right]_{0}^{1}$

$$
=\pi\left(\frac{1}{3}-\frac{1}{2}+\frac{1}{5}\right)=\pi \cdot \frac{10-15+6}{30}=\frac{\pi}{30}
$$

May 15-9:17 AM

Consider the enclosed region below

$$
\begin{aligned}
& \text { at } x=0 \\
& y=0 \operatorname{Sin} 0^{2}=0 \\
& \text { at } x=\sqrt{\pi} \\
& y=\sqrt{\pi} \sin \pi=0
\end{aligned}
$$

find the area of this enclosed region

$$
\begin{aligned}
A & =\int_{0}^{\sqrt{\pi}} x \sin x^{2} d x
\end{aligned} \begin{aligned}
& u=x^{2} \\
& \\
& \left.=\int_{0}^{\pi} \sin u \frac{d u}{2}=\frac{1}{2}(-\cos u)\right]_{0}^{\pi} \quad \begin{array}{l}
x=0 \rightarrow d x \rightarrow \frac{d u}{2}=x d x \\
\\
\\
\\
\\
\\
\\
\\
\\
\\
\\
\end{array}=\frac{-1}{2}[\cos \pi-\cos 0] \\
& 2
\end{aligned}
$$

Rotate that region by x-axis, and Set-up the integral for the volume generated.

Disk

$$
\begin{aligned}
V & =\int_{0}^{\sqrt{\pi}} \pi\left(x \sin x^{2}\right)^{2} d x \\
& =\pi \int_{0}^{\sqrt{\pi}} x^{2} \sin ^{2} x^{2} d x
\end{aligned}
$$

May 15-9:34 AM

If $f(x)$ is cont. on $[a, b]$, then the length of the curve $y=f(x)$ from $x=a$ to $x=b$ is

$$
L=\int_{a}^{b} \sqrt{1+\left[f^{\prime}(x)\right]^{2}} d x
$$

Find the are length of the curve $y=1+6 x^{3 / 2}$ from $x=0$ to $x=1 . \quad f(x)=1+6 x^{3 / 2}$

$$
\begin{aligned}
L=\int_{0}^{1} \sqrt{1+81 x} d x & \begin{aligned}
u & =1+81 x \\
d u & =81 d x \quad \frac{d u}{81}=d x \\
x & =0 \rightarrow u=1 \\
& =\int_{1}^{82} \sqrt{u} \cdot \frac{d u}{81} \\
& \left.=\frac{1}{81} \int_{1}^{82} u^{1 / 2} d u=\frac{1}{81} \cdot \frac{u^{3 / 2}}{3 / 2}\right]_{1}^{82}
\end{aligned} \\
& \left.=\frac{2}{243}(u \sqrt{u})\right]_{1}^{82}
\end{aligned}=\frac{2}{243}(82 \sqrt{82}-1)
$$

